noodleFeet : Looks Like a Noodle

HEAD : I can’t find a damn semi-transparent mixing bowl to appropriate as Noodle’s noggin. So, I went with a plastic bowl I bought a while back because it was Robot Army gray and yellow. The size isn’t right, but tilted at an angle with his eyes poking out it looks a lot like a helmet… and I’m okay with that.

SHOULDERS : I went to the store with Mark yesterday and searched through all of the collars in the pet isle to find a replacement for his old harness which no longer fits around his new planetary gear assembly. There were many small kitty-sized bands with big jingly bells… but not a single one was in neon yellow. So I didn’t bother getting any.

In leu, I smashed noodle’s old harness back onto his gear box so that if needed I can still hook him into the leash hanging from the ceiling above the work table. It lacks a proper bell… but fashion is second to safety.

KNEES : I think noodle needs socks.

TOES : He needs socks because I still haven’t been able to locate some of those stupid squishy stress balls which I plan to halve and mount to the bottom of each of noodle’s feet. These should help give him some traction as he attempts to walk. Someone pointed out that the foam material of the noodle was just sliding on the smooth surface of our table which was why he didn’t get very far during his first test run…er- walk.

Any how… the socks will keep the bottoms of his noodles clean until they’re capped with said squishy foam balls… Because tomorrow I’m taking noodle on his first ever outing into the big wide world.

He’s far enough along to show off at this point, walking or not. Speaking of walking… here’s some footage of him taking his first steps:

Light Play : Brains Nerves and Butts

This past weekend Mark and I got a bunch more work done for the installation. We finished glueing and painting all the shiny black honeycomb pallets, so all twelve of them are now stacked neatly waiting to receive delta babies. …which means we need to build lots… and LOTs of delta babies. Thankfully, as I sit here and write this, that part is mostly done. For the past week or so the living room has transformed into a birthing chamber of plastic bins and Create TV.

IMG_1726

At an average of 15-20 minutes a piece, we built around 50ish more base assemblies. That’s the acrylic bit with the three motors attached.

IMG_1748

Obviously, they aren’t full deltas yet. They’re missing their snazzy yellow arms and blinky LED on top, but we wanted to get the hard part out-of-the-way first. The next step is to calibrate all of these little delta butts, and then screw all the grey paddles onto the gear hubs. >.< Which will also take a bit of doing.

Mark spent a crap load of time crimping custom cables which will tie the deltas together as one big happy collective consciousness. These will connect a series of relay boards to the individual brain PCBs of each robot:

IMG_1705

So yeah, brains…. less exciting, I’m soldering brains again. Boo. With all the other cool things to work on, its monotonous melting all the same pieces over and over to blank PCBs… but alas, it must be done sooner rather than later.

As the brains are tested and flashed with all of the knowledge of how to be a good little inverse kinematic thinking soldier… we’ll be gifting each baby with a brain one by one, and then adding them to their shiny honey comb home to dance the mightiest robot dance.

I even squeezed out some new art which we had sent away to become postcards. We’ll be handing them out wherever we happen to show things at for the rest of the year. I say all of this tantric preparation does sorta feel like jumping out of a plane with a skirt on… so the image is appropriate. PROPAGANDA!

Campaign15PRINTFILE

Our first gig of the season is in a little less than two weeks during Las Vegas’ Science and Technology Festival. Here we come!

 

Light Play : Spawning for Maker Faire

Maker Faire in San Mateo is imminent! Last year my partner Mark and I showed an installation of 30 delta robots which mimicked the physical gestures of people. All of the robots however did the exact same thing… which was impressive if you’ve never seen them before, but hardly to the extent of awesome I have in mind for the project.

IMG_5181

Though we’ve been working hard, Light Play still has a long way to go development-wise. Until they’re feeding off neural input and hopping through cities in flocks, I’m continuing to slowly expand our numbers. For now, that number is 84, which doesn’t seem like a whole lot in the face of the thousand I dream of having… yet as I sit on the couch night after night building these little monsters, 84 feels plenty enough to my calloused finger-tips:

IMG_1654

This is what takes the most time to assemble. The motors mounted to their acrylic bases:

IMG_1672

Hardware: the biggest hardware upgrade we’ve made this year has been to the bases the robots sit inside of. Their honeycomb-shaped pods have been redesigned with frequent transportation in mind seeing as the wooden ones we made last year took a bit of a beating and were awkward to carry. In addition to holding three less delta robots per pod, the new bases are also made from black ABS… which means they mostly disappear in darkness, are lighter, and also a lot more resistant to bangs and dings.- Oh! And holding seven robots instead of ten makes for a nice round shape too!

IMG_1677

We had these new honeycombs cut professionally at a metal-fab here in town; well worth the extra money not to have to supervise cutting all the shapes ourselves at SYN Shop. Where we did save some time doing this, there is really no getting around glueing the cut pieces together, so Mark and I have been attaching things with ABS weld in his garage a little each day.

When all is done, we’ll be able to lay out these modular pods to fit whatever space we’re showing in. Our setup for Maker Faire this year will consist of 12 pods that are arranged in something of a dome, like this (but one tier higher):

conceptHEX7

Software: I mentioned the robots should be doing interesting things. Yes. Imagine, if each delta robot were a blade of grass in a field, and your movements were the wind… every hop, skip and wiggle you made would send ripples of complex rolling patterns through the field as a response. That’s the end goal, and very much Mark’s department.

The robots are networked with the DMX lighting protocol now. They also have a snazzy GUI which Mark designed in Netbeans to simulate and visualize the behavior of the field. We’re still deciding on what type of sensor will be responsible for capturing input.

The use of the Xbox Kinect last year, though it worked marvelously, became a nightmare from hell. It turned our field into an exhibit more than a curiosity and tied us to the booth explaining to thousands of people one by one how to control the flock… To avoid a similar situation… our setup this year will respond to the environment at large. For people walking up and observing, it won’t be immediately apparent whether or not the robots are reacting to them. This will fuel engagement and hopefully allow us more zen time to detach and enjoy the rest of the show.

Robo Wagon: Like Scooby Do, Robot Army is going to have its own touring transportation of sorts. It might not be an actual van… and probably not as cool as the picture- but in the next month we will figure out a more permanent method of packing and hauling our kinetic circus:

Untitled-1

With less that six weeks left, it’s crunchy again. I’ll find time to post updates when I can… but for now, back to soldering brains. ❤ Oh yeah, while we build the new homes, the deltas are getting acquainted with noodleFeet in the workroom. DAWWWW:

IMG_1646.JPG

noodleFeet : All Wired and Ready

When your baby is learning to walk, you make sure its near soft things and away from stairs so that when the inevitable fall occurs, they don’t collapse into pieces. When your baby is a robot learning to walk, bungie chords and harnesses are also needed. And in the case with noodle, who is delicate and wobbly like a skittish baby fawn, I am sparing no precaution!

The noodle Harness

IMG_1487

Robots get rigging. Mark took the time this weekend and installed a guide wire on the ceiling over our work table. A “leash” hangs down from this wire and clips on to noodle’s smashing neon-yellow harness which wraps around all four of his legs. If he loses his balance, he won’t have very far to fall before the leash pulls tight and catches him.

Calibration!

IMG_1485

Before assembling noodle for his big day, I had to calibrate all of the servo motors to 90º. Only then could I screw the gears to the motor shafts, as well as connect the pulley bits from the secondary servo motors on each leg to the bendy bits.

In the end, once all of the final parts were attached to one another,  I was pleased with how solidly he stands on his own. Hopefully I can figure out the right way to distribute balance so that he can lift up his feet and walk.

Wiring up the Bread

IMG_1482

Lastly, this afternoon I taped an Arduino down to the end of a breadboard and fashioned some male headers so that the servo motors could easily plug-in and tether to their appropriate pins. The breadboard itself is taped directly to the leash so that it will move with noodle as he walks… or falls.

When is he walking?

So, he’s poised and ready. The big moment will either come tonight some time or tomorrow after Mark is home from work for the weekend. Either way, I’ll be sure to take LOTS of footage of my wobbly child as he navigates across the table for the first time. =O

Wish us luck!

noodleFeet : Goes Metal

I’ve relied on 3D printing for so many of my prototypes lately, and have finally come to a point where plastic won’t cut it any longer. I require metal, in this case aluminum. The likes of which I ordered from McMaster-Carr and received in the mail last week. I literally spent the majority of the weekend meditating over how to measure my cuts and holes… as for the first time in a long time, their accuracy and placement was entirely up to me and my calipers, not some Cartesian goo plotter as I’m so spoiled by…

While everyone was downing beer and watching the Stuperbowl, I was in the garage with Mark playing with his father’s ancient drill press. He eyeballed one axis, I checked it against the other, and we were able to punch the 24 holes needed on the four pieces of aluminum tubing which would soon be noodleFeet’s strong new legs.

IMG_1445

As you can see, I printed out little strips of paper with lines where holes needed to be drilled. It only occurred to us immediately after we finished how much easier this would have been if we had 3D printed a jig for drilling the holes instead… So alas, 3D printing could have potentially saved the day. Thoughtful or not… we did a pretty good job.

Once the aluminum femur was assembled, I realized I was going to need stronger springs. These flour legs are going to support eight motors, a board, and eyeballs; a decent amount of weight:

IMG_1448

The calf bit is essentially a bone buried within the noodle material. However, with my last prototype, the bone kept sliding out the clearance slot I cut in the noodle. So to remedy this I made these little braces that look like pac-man heads… which keep the bone centered within the tube and prevent it from popping out where it isn’t suppose to:

IMG_1456

The rare and beautiful white noodle was harvested by Mark from the great noodle beast itself. I cut the pieces to length with a Japanese saw and carved the appropriate clearance slots so that the legs can fold in on themselves like they should:

IMG_1460

The new servo and leg bracket is THICK. It is complete with roller bearings spaced a decent amount apart vertically to keep the intersecting pipe from wobbling around (as with my first prototype):

IMG_1454

The eight roller bearings hold the pipes perfectly parallel to one another and allow them to turn nice and smoothly. I also added stronger springs to tension the legs outward, so the new prototype is a little monster. Although… he looks sort of helpless up-side-down on my bench right now:

IMG_1463

At this point, Feet is nothing but a pile of feet. He needs eyes, and that is exactly what I’m going to do next… and maybe a brain. Over this weekend I’ll likely hook an Arduino up to his servos and figure out a walking pattern too.

I honestly have no idea what it’ll look like when he walks, but I’m hoping due to the springs counterbalancing his weight that he’ll have a little bit of a bounce. That’d be cute.

I also don’t know if he’ll be able to balance himself when he walks. Once summer happens and the noodle is less rare, I will go harvest some 4″ stock (in neon yellow) from Walmart and cut my prototype some new fat feet. That way he makes more contact with the ground and is less like to fall. Like training feet.

IMG_1475

Hopefully by my next update he’ll be moving some… like a robot aught to. Cheers!

jellyBot : Racky All in one Piece

IMG_1152

This weekend I started printing the newly redesigned pieces for my jellyfish robot. I got about 90% finished by Sunday, but not enough was intact to start testing out whether or not the design will move like it should.

Yesterday, I scraped together the short end pieces leftover from old roles of filament to finish printing the rest of the tiny arms for Racky. Now that I’ve added a slight curve to the length in addition to the U joint at one end, it was a pain deciding how to print the piece without ended up with a pile of pelvic fur. I had to position it rocketing off the build plate with some support material, which had a 50% success rate, (which sucked as I was nearly out of yellow). In spite of the failed attempts, I got them all done… just in the knick of filament :

IMG_1138

Once these small arms were added to the body, I needed to come up with a better way to attach the tendrils than with twist ties (like in my old prototype). So, I made a little U joint piece that could screw onto the under side of each arm :

IMG_1145

At this point I realized that the jelly as a whole needed to be disassembled so that I could secure the motors onto the steel rods somehow. I had the idea to use some of the square rubber grommets that came with the servo motors to slide onto the rod, filling the small gap between the two and wedging them in place :

IMG_1143

Once done, I was able to put the rest of the jellyfish back together around this piece. The last bits to screw together where the tendrils to the short curvy arms I had just attached to the body :

IMG_1150

Everything looks nice and I’m sorta confident it will work to some degree… but before I can hook the motors up and do any sort of testing, I need to design that tensioner for the rack and pinion. Otherwise nothing is going anywhere. Alas, I’ll get to it!

 

My New jellyBot Prototype, Racky

 

IMG_1097

About a year ago I started building a robotic jellyfish inspired by Festo’s submergible AquaJelly. I was just beginning to figure out how to get the thing moving when I got sidetracked with the prospect of launching a Kickstarter campaign and dropped the project cold. During this whole long year while I’ve been fulfilling the said Kickstarter, this poor jelly prototype (“Boney”) has watched silently from a distant shelf in the workroom, begging me to pick it up again. Finally this weekend I was able to spend some time giving the old parts a makeover… in yellow.

I added a nice gentle curve to the moving pieces, taking after the design of its cousins, the delta robots :

IMG_1040

IMG_1042

Last year I decided to use a rack and pinion to get the parts to move in leu of Festo’s fancy linear actuator that they showcase in their model. Never having used, let alone designed a working rack and pinion before, this took some fussing about to get just right. The two servo motors I chose to drive the jelly’s motion are attached to a fixed central core of steel rods which two separate radial disks glide up down upon. All of the jelly’s flowing arms will be attached to the elbow of the mechanical arms, and as the disks these arms are attached to move back and forth, towards and away from each other, a sort of circular pumping motion is made.

IMG_1079

The two rack and pinion sets are in place now, each on opposite sides from one another moving different pieces in opposite directions. The rack passes through a slot in the opposing central disk, allowing it a deeper breadth of motion as well as keeping it in place. The only thing I seem to be missing at this point is a tensioner to press the rack against the gear on the driveshaft of the motor, so I have plans to whip one up later tonight.

On my old prototype, I used plain long strips of sheet ABS as stand ins for the jelly’s long flowing arms. They worked more or less, but weren’t very nice to look at :

IMG_4097

For this rendition of the bot, Mark offered me some of his old shelf liners from the garage to use. These happened to be an awesome semitransparent gray that matches the printed parts of the jelly perfectly! I decided on an elongated spade shape for the tendrils this time :

IMG_1046

These pieces connect at one end to a small ring, creating the umbrella of the jelly (the delta robots watch from the side in aw…) :

IMG_1056

The center of the umbrella mounts to the top portion of the drive shaft with a fancy pants shape sandwiching it in place like so :

IMG_1058

Once I design my tensioner for the rack and pinion and finish printing and attaching the rest of the jelly’s small arms (all of this depending on whether or not my printer stops being a butt) I can then start working on some test code to get the thing moving! I have no idea really if my design will work at all… I’ll just have to wait and see. For now though, it’s getting acquainted with all of its brothers and sisters in the war room. =]

IMG_1078

My next post will likely be about whether or not I succeeded mechanically in getting the jelly to do what its supposed to. Cheers!

IMG_1116